\[ y'(x)=\frac {x^3 y(x)^3+6 x^2 y(x)^2+14 x y(x)+2 x+12}{x^2 (x y(x)+x+2)} \] ✓ Mathematica : cpu = 0.214669 (sec), leaf count = 76
\[\left \{\left \{y(x)\to -\frac {x+2}{x}+\frac {1}{x^3 \left (\frac {1}{x^3}-\frac {1}{x^3 \sqrt {-2 x+c_1}}\right )}\right \},\left \{y(x)\to -\frac {x+2}{x}+\frac {1}{x^3 \left (\frac {1}{x^3}+\frac {1}{x^3 \sqrt {-2 x+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.12 (sec), leaf count = 63
\[ \left \{ y \left ( x \right ) ={\frac {1}{x} \left ( -2\,\sqrt {{\it \_C1}-2\,x}-x-2 \right ) \left ( \sqrt {{\it \_C1}-2\,x}+1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{x} \left ( -2\,\sqrt {{\it \_C1}-2\,x}+x+2 \right ) \left ( \sqrt {{\it \_C1}-2\,x}-1 \right ) ^{-1}} \right \} \]