\[ y'(x)=\frac {-2 x^3 y(x)-2 x^2 y(x)+2 x^5+2 x^4+x^3+3 x^2-2 y(x)-x+1}{x^2-y(x)} \] ✓ Mathematica : cpu = 0.0320043 (sec), leaf count = 42
\[\left \{\left \{y(x)\to x^2+\frac {1}{2} \left (1+W\left (-e^{x^4+\frac {4 x^3}{3}-2 x^2+4 x-1+c_1}\right )\right )\right \}\right \}\] ✓ Maple : cpu = 0.245 (sec), leaf count = 37
\[ \left \{ y \left ( x \right ) ={x}^{2}+{\frac {1}{2}{\it lambertW} \left ( -2\,{\frac {{{\rm e}^{{x}^{4}}}{{\rm e}^{4/3\,{x}^{3}}}{\it \_C1}\, \left ( {{\rm e}^{x}} \right ) ^{4}{{\rm e}^{-1}}}{ \left ( {{\rm e}^{{x}^{2}}} \right ) ^{2}}} \right ) }+{\frac {1}{2}} \right \} \]