\[ y'(x)=\frac {\sqrt {x} \left (-18 x^6 y(x)+108 x^3 y(x)^2-108 x^{3/2} y(x)+x^9+18 x^{9/2}-108 x^{3/2}-216 y(x)^3\right )}{36 x^3-216 y(x)-216} \] ✓ Mathematica : cpu = 0.2022 (sec), leaf count = 79
\[\left \{\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (-\frac {1}{216}-\frac {1}{\sqrt {-62208 x^{3/2}+c_1}}\right )}\right \},\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (-\frac {1}{216}+\frac {1}{\sqrt {-62208 x^{3/2}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.175 (sec), leaf count = 87
\[ \left \{ y \left ( x \right ) ={ \left ( \sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}{x}^{3}-3\,{x}^{3}+18 \right ) \left ( 6\,\sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}-18 \right ) ^{-1}},y \left ( x \right ) ={ \left ( \sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}{x}^{3}+3\,{x}^{3}-18 \right ) \left ( 6\,\sqrt {9\,{\it \_C1}-12\,{x}^{3/2}}+18 \right ) ^{-1}} \right \} \]