\[ y'(x)=\frac {3 x^5 y(x)+3 x^4 y(x)^2+x^3 y(x)^3+2 x^3 y(x)+x^2 y(x)^2+x^6+x^4-y(x)-2 x+1}{x} \] ✓ Mathematica : cpu = 0.183674 (sec), leaf count = 98
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 x^2 y(x)+3 x^3+x}{\sqrt [3]{29} \sqrt [3]{x^3}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3} \left (x^3\right )^{2/3}}{9 x}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.109 (sec), leaf count = 42
\[ \left \{ y \left ( x \right ) ={\frac {-9\,{x}^{2}+29\,{\it RootOf} \left ( -81\,\int ^{{\it \_Z}}\! \left ( 841\,{{\it \_a}}^{3}-27\,{\it \_a}+27 \right ) ^{-1}{d{\it \_a}}+x+3\,{\it \_C1} \right ) -3}{9\,x}} \right \} \]