\[ y'(x)=\frac {x \left (-6 e^{-2 x^2} x^4 y(x)+12 e^{-x^2} x^2 y(x)^2+8 e^{-x^2} x^2 y(x)-8 e^{-x^2} y(x)+e^{-3 x^2} x^6-4 e^{-2 x^2} x^4+4 e^{-2 x^2} x^2+8 e^{-x^2} x^2-8 e^{-x^2}-8 y(x)^3\right )}{4 e^{-x^2} x^2-8 y(x)-8} \] ✓ Mathematica : cpu = 0.723996 (sec), leaf count = 150
\[\left \{\left \{y(x)\to -\frac {1}{2} e^{-x^2} \left (2 e^{x^2}-x^2\right )+\frac {e^{-3 x^2}}{8 \left (\frac {1}{8} e^{-3 x^2}-\frac {e^{-3 x^2}}{\sqrt {-64 x^2+c_1}}\right )}\right \},\left \{y(x)\to -\frac {1}{2} e^{-x^2} \left (2 e^{x^2}-x^2\right )+\frac {e^{-3 x^2}}{8 \left (\frac {1}{8} e^{-3 x^2}+\frac {e^{-3 x^2}}{\sqrt {-64 x^2+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.178 (sec), leaf count = 85
\[ \left \{ y \left ( x \right ) ={ \left ( -2+{x}^{2} \left ( \sqrt {-{x}^{2}+{\it \_C1}}+1 \right ) {{\rm e}^{-{x}^{2}}} \right ) \left ( 2\,\sqrt {-{x}^{2}+{\it \_C1}}+2 \right ) ^{-1}},y \left ( x \right ) ={ \left ( 2+{x}^{2} \left ( \sqrt {-{x}^{2}+{\it \_C1}}-1 \right ) {{\rm e}^{-{x}^{2}}} \right ) \left ( 2\,\sqrt {-{x}^{2}+{\it \_C1}}-2 \right ) ^{-1}} \right \} \]