\[ y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+x^3 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+2 x^3 \log (x) \log (y(x))+x^4 \log ^2(x)+x^3 \log ^2(x)+x \log ^2(y(x))+2 x \log (x) \log (y(x))+\log (y(x))+x \log ^2(x)+\log (x)-1\right )}{x} \] ✗ Mathematica : cpu = 1.35575 (sec), leaf count = 0 , could not solve
DSolve[Derivative[1][y][x] == ((-1 + Log[x] + x*Log[x]^2 + x^3*Log[x]^2 + x^4*Log[x]^2 + Log[y[x]] + 2*x*Log[x]*Log[y[x]] + 2*x^3*Log[x]*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x*Log[y[x]]^2 + x^3*Log[y[x]]^2 + x^4*Log[y[x]]^2)*y[x])/x, y[x], x]
✓ Maple : cpu = 1.082 (sec), leaf count = 145
\[ \left \{ y \left ( x \right ) ={ \left ( {x}^{{\frac {{x}^{5}}{4\,{x}^{5}+5\,{x}^{4}+10\,{x}^{2}+20\,{\it \_C1}}}} \right ) ^{-4} \left ( {x}^{{\frac {{x}^{4}}{4\,{x}^{5}+5\,{x}^{4}+10\,{x}^{2}+20\,{\it \_C1}}}} \right ) ^{-5} \left ( {x}^{{\frac {{x}^{2}}{4\,{x}^{5}+5\,{x}^{4}+10\,{x}^{2}+20\,{\it \_C1}}}} \right ) ^{-10} \left ( {x}^{{\frac {{\it \_C1}}{4\,{x}^{5}+5\,{x}^{4}+10\,{x}^{2}+20\,{\it \_C1}}}} \right ) ^{-20} \left ( {{\rm e}^{{\frac {x}{4\,{x}^{5}+5\,{x}^{4}+10\,{x}^{2}+20\,{\it \_C1}}}}} \right ) ^{-20}} \right \} \]