\[ y'(x)=\frac {-\frac {12}{5} x^6 y(x)-24 x^{7/2} y(x)+6 x^3 y(x)^2-6 x^3 y(x)+\frac {8 x^9}{25}+\frac {24 x^{13/2}}{5}+\frac {12 x^6}{5}+24 x^4+14 x^{7/2}-6 x^3+40 x^{3/2}-60 x y(x)+30 \sqrt {x} y(x)^2-5 \sqrt {x} y(x)-5 y(x)^3+10 x-5 \sqrt {x}}{x \left (2 x^3-5 y(x)+10 \sqrt {x}-5\right )} \] ✓ Mathematica : cpu = 0.321636 (sec), leaf count = 112
\[\left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}-\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \},\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}+\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.143 (sec), leaf count = 101
\[ \left \{ y \left ( x \right ) ={ \left ( \left ( 2\,{x}^{3}+10\,\sqrt {x} \right ) \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }-2\,{x}^{3}-10\,\sqrt {x}+5 \right ) \left ( 5\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }-5 \right ) ^{-1}},y \left ( x \right ) ={ \left ( \left ( 2\,{x}^{3}+10\,\sqrt {x} \right ) \sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }+2\,{x}^{3}+10\,\sqrt {x}-5 \right ) \left ( 5\,\sqrt {{\it \_C1}-2\,\ln \left ( x \right ) }+5 \right ) ^{-1}} \right \} \]