\[ y'(x)=\frac {2 x y(x)^3+y(x)^3+2 x y(x)^2+y(x)^2+6 x y(x) \log ^2(2 x+1)+3 y(x) \log ^2(2 x+1)+6 x y(x)^2 \log (2 x+1)+3 y(x)^2 \log (2 x+1)+4 x y(x) \log (2 x+1)+2 y(x) \log (2 x+1)+2 x+2 x \log ^3(2 x+1)+\log ^3(2 x+1)+2 x \log ^2(2 x+1)+\log ^2(2 x+1)-1}{2 x+1} \] ✓ Mathematica : cpu = 0.354834 (sec), leaf count = 82
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 y(x)+3 \log (2 x+1)+1}{\sqrt [3]{29}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {1}{9} 29^{2/3} x+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.128 (sec), leaf count = 40
\[ \left \{ y \left ( x \right ) =-\ln \left ( 2\,x+1 \right ) -{\frac {1}{3}}+{\frac {29\,{\it RootOf} \left ( -81\,\int ^{{\it \_Z}}\! \left ( 841\,{{\it \_a}}^{3}-27\,{\it \_a}+27 \right ) ^{-1}{d{\it \_a}}+x+3\,{\it \_C1} \right ) }{9}} \right \} \]