[next] [prev] [prev-tail] [tail] [up]
xy′(x)−y(x)2+1=0 ✓ Mathematica : cpu = 0.057777 (sec), leaf count = 33
{{y(x)→1−e2c1x21+e2c1x2}} ✓ Maple : cpu = 0.034 (sec), leaf count = 11
{y(x)=−tanh(ln(x)+_C1)}
xy′−y2+1=0
This is Riccati first order non-linear. But it is separable. Hence(1)y′=y2−1x
Hence
dydx=y2−1xdyy2−1=dxx
Integrating
−tanh−1(y)=lnx+Cy=−tanh(lnx+C)
Verification
restart; ode:=x*diff(y(x),x)-y(x)^2+1=0; my_sol:=-tanh(ln(x)+_C1); odetest(y(x)=my_sol,ode); 0
[next] [prev] [prev-tail] [front] [up]