\[ y'(x)=\frac {y(x)}{x \log (x)}-x^3 \left (-y(x)^2-2 y(x) \log (x)-\log ^2(x)\right ) \] ✓ Mathematica : cpu = 0.210036 (sec), leaf count = 198
\[\left \{\left \{y(x)\to -\frac {\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1) \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)}+\frac {1}{4} x^3 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)} \left (\frac {x^3}{4}+\frac {1}{4} x^3 (4 \log (x)-1)\right )}{x^3 \left (\frac {1}{16} x^4 e^{\frac {1}{16} x^4 (4 \log (x)-1)} (4 \log (x)-1)+c_1 e^{\frac {1}{16} x^4 (4 \log (x)-1)}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.164 (sec), leaf count = 43
\[ \left \{ y \left ( x \right ) =-{\frac {\ln \left ( x \right ) \left ( 4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}+16 \right ) }{4\,{x}^{4}\ln \left ( x \right ) -{x}^{4}+8\,{\it \_C1}}} \right \} \]