\[ y'(x)=\frac {(y(x)-x+\log (x+1))^2+x}{x+1} \] ✓ Mathematica : cpu = 0.186427 (sec), leaf count = 24
\[\left \{\left \{y(x)\to x-\log (x+1)+\frac {1}{-\log (x+1)+c_1}\right \}\right \}\] ✓ Maple : cpu = 0.154 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) ={\frac {- \left ( \ln \left ( 1+x \right ) \right ) ^{2}+ \left ( x-{\it \_C1} \right ) \ln \left ( 1+x \right ) +{\it \_C1}\,x-1}{\ln \left ( 1+x \right ) +{\it \_C1}}} \right \} \]