ODE No. 1042

\[ -n y(x)+y''(x)+x y'(x)=0 \] Mathematica : cpu = 0.0064842 (sec), leaf count = 61

DSolve[-(n*y[x]) + x*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 e^{-\frac {x^2}{2}} H_{-n-1}\left (\frac {x}{\sqrt {2}}\right )+c_2 e^{-\frac {x^2}{2}} \, _1F_1\left (\frac {n+1}{2};\frac {1}{2};\frac {x^2}{2}\right )\right \}\right \}\] Maple : cpu = 0.07 (sec), leaf count = 41

dsolve(diff(diff(y(x),x),x)+x*diff(y(x),x)-n*y(x)=0,y(x))
 

\[y \left (x \right ) = {\mathrm e}^{-\frac {x^{2}}{2}} x \left (\KummerU \left (\frac {n}{2}+1, \frac {3}{2}, \frac {x^{2}}{2}\right ) c_{2}+\KummerM \left (\frac {n}{2}+1, \frac {3}{2}, \frac {x^{2}}{2}\right ) c_{1}\right )\]