ODE No. 1072

\[ y(x) \left (-4 a n p(x)^2+a+b p(x)\right )+a p''(x) y'(x)+y''(x)=0 \] Mathematica : cpu = 0.290872 (sec), leaf count = 0

DSolve[(a + b*p[x] - 4*a*n*p[x]^2)*y[x] + a*Derivative[1][y][x]*Derivative[2][p][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[(a + b*p[x] - 4*a*n*p[x]^2)*y[x] + a*Derivative[1][y][x]*Derivative[2][p][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+a*diff(diff(p(x),x),x)*diff(y(x),x)+(a+b*p(x)-4*n*a*p(x)^2)*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \mathit {DESol}\left (\left \{\frac {d^{2}}{d x^{2}}\textit {\_Y} \left (x \right )+a \left (\frac {d^{2}}{d x^{2}}p \left (x \right )\right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (a +b p \left (x \right )-4 n a p \left (x \right )^{2}\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]