ODE No. 1091

\[ x \left (y''(x)+y(x)\right )-\cos (x)=0 \] Mathematica : cpu = 0.0171449 (sec), leaf count = 41

DSolve[-Cos[x] + x*(y[x] + Derivative[2][y][x]) == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {1}{2} (\text {Ci}(2 x) \sin (x)-\text {Si}(2 x) \cos (x)+\log (x) \sin (x))+c_1 \cos (x)+c_2 \sin (x)\right \}\right \}\] Maple : cpu = 0.054 (sec), leaf count = 35

dsolve(x*(diff(diff(y(x),x),x)+y(x))-cos(x)=0,y(x))
 

\[y \left (x \right ) = \frac {\sin \left (x \right ) \Ci \left (2 x \right )}{2}-\frac {\Si \left (2 x \right ) \cos \left (x \right )}{2}+\frac {\left (2 c_{2}+\ln \left (x \right )\right ) \sin \left (x \right )}{2}+\cos \left (x \right ) c_{1}\]