\[ y(x) \left (-a b-b^2 x^2\right )+a y'(x)+x^2 y''(x)=0 \] ✓ Mathematica : cpu = 0.16868 (sec), leaf count = 43
DSolve[(-(a*b) - b^2*x^2)*y[x] + a*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_2 e^{b x} \int _1^xe^{\frac {a}{K[1]}-2 b K[1]}dK[1]+c_1 e^{b x}\right \}\right \}\] ✓ Maple : cpu = 0.201 (sec), leaf count = 178
dsolve(x^2*diff(diff(y(x),x),x)+a*diff(y(x),x)-(b^2*x^2+a*b)*y(x)=0,y(x))
\[y \left (x \right ) = \sqrt {x}\, \left ({\mathrm e}^{b x} \mathit {HD}\left (-4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right ) c_{2}+\mathit {HD}\left (4 \sqrt {2}\, \sqrt {a b}, -1-4 \sqrt {2}\, \sqrt {a b}, 8 \sqrt {2}\, \sqrt {a b}, -4 \sqrt {2}\, \sqrt {a b}+1, \frac {\sqrt {2}\, \sqrt {a b}\, x -a}{\sqrt {2}\, \sqrt {a b}\, x +a}\right ) {\mathrm e}^{\frac {-b \,x^{2}+a}{x}} c_{1}\right )\]