ODE No. 1184

\[ -x^4+x^2 y''(x)+x^2-4 x y'(x)+6 y(x)=0 \] Mathematica : cpu = 0.0066318 (sec), leaf count = 38

DSolve[x^2 - x^4 + 6*y[x] - 4*x*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_2 x^3+c_1 x^2+\frac {1}{2} \left (x^4+2 x^2+2 x^2 \log (x)\right )\right \}\right \}\] Maple : cpu = 0.023 (sec), leaf count = 25

dsolve(x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x)-x^4+x^2=0,y(x))
 

\[y \left (x \right ) = \frac {x^{2} \left (2 c_{1} x +x^{2}+2 \ln \left (x \right )+2 c_{2}+2\right )}{2}\]