ODE No. 1186

\[ x^3 (-\sin (x))+x^2 y''(x)-5 x y'(x)+8 y(x)=0 \] Mathematica : cpu = 0.014115 (sec), leaf count = 42

DSolve[-(x^3*Sin[x]) + 8*y[x] - 5*x*Derivative[1][y][x] + x^2*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {1}{2} \left (x^4 \text {Ci}(x)-x^3 \sin (x)+x^2 \cos (x)\right )+c_2 x^4+c_1 x^2\right \}\right \}\] Maple : cpu = 0.03 (sec), leaf count = 36

dsolve(x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+8*y(x)-sin(x)*x^3=0,y(x))
 

\[y \left (x \right ) = \frac {x^{4} \Ci \left (x \right )}{2}-\frac {\sin \left (x \right ) x^{3}}{2}+\frac {x^{2} \left (2 c_{1} x^{2}+2 c_{2}+\cos \left (x \right )\right )}{2}\]