ODE No. 120

\[ x y'(x)-y(x) \left (x \log \left (\frac {x^2}{y(x)}\right )+2\right )=0 \] Mathematica : cpu = 0.1124 (sec), leaf count = 20

DSolve[-((2 + x*Log[x^2/y[x]])*y[x]) + x*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to x^2 e^{-2 c_1 e^{-x}}\right \}\right \}\] Maple : cpu = 0.18 (sec), leaf count = 17

dsolve(x*diff(y(x),x)-y(x)*(x*ln(x^2/y(x))+2) = 0,y(x))
 

\[y \left (x \right ) = x^{2} {\mathrm e}^{-{\mathrm e}^{-x} c_{1}}\]