ODE No. 123

\[ x y'(x)-y(x)-x \sin \left (\frac {y(x)}{x}\right )=0 \] Mathematica : cpu = 0.127073 (sec), leaf count = 19

DSolve[-(x*Sin[y[x]/x]) - y[x] + x*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to 2 x \cot ^{-1}\left (\frac {e^{-c_1}}{x}\right )\right \}\right \}\] Maple : cpu = 0.081 (sec), leaf count = 44

dsolve(x*diff(y(x),x)-x*sin(y(x)/x)-y(x) = 0,y(x))
 

\[y \left (x \right ) = \arctan \left (\frac {2 x c_{1}}{x^{2} c_{1}^{2}+1}, \frac {-x^{2} c_{1}^{2}+1}{x^{2} c_{1}^{2}+1}\right ) x\]