[next] [prev] [prev-tail] [tail] [up]
ay′(x)+(x−1)xy″(x)−2y(x)=0 ✓ Mathematica : cpu = 0.622205 (sec), leaf count = 360
DSolve[-2*y[x] + a*Derivative[1][y][x] + (-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
{{y(x)→c2xa(a2+2ax−a+2x2−2x)(1−x)−a(−a2F1(1,−a;1−a;(−a+1−a2+1)(x−1)(−a+1−a2−1)x)(1−a2)3/2+a2F1(1,−a;1−a;(a+1−a2−1)(x−1)(a+1−a2+1)x)(1−a2)3/2+(x−1)((1−a2+1)2F1(2,1−a;2−a;(−a+1−a2+1)(x−1)(−a+1−a2−1)x)−(1−a2−1)2F1(2,1−a;2−a;(a+1−a2−1)(x−1)(a+1−a2+1)x))(a2−1)2x)2a2(a2+3a+4)+c1(a2+2ax−a+2x2−2x)a2+3a+4}} ✓ Maple : cpu = 0.016 (sec), leaf count = 42
dsolve(x*(x-1)*diff(diff(y(x),x),x)+a*diff(y(x),x)-2*y(x)=0,y(x))
y(x)=(a2+a(2x−1)+2x2−2x)c1+c2(x−1)−a(x−1)xax
[next] [prev] [prev-tail] [front] [up]