[next] [prev] [prev-tail] [tail] [up]
(ax+b)y′(x)+cy(x)+(x−1)xy″(x)=0 ✓ Mathematica : cpu = 0.108355 (sec), leaf count = 146
DSolve[c*y[x] + (b + a*x)*Derivative[1][y][x] + (-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
{{y(x)→(−1)b+1c2xb+12F1(a2+b−12a2−2a−4c+1+12,a2+b+12a2−2a−4c+1+12;b+2;x)+c12F1(a2−12a2−2a−4c+1−12,a2+12a2−2a−4c+1−12;−b;x)}} ✓ Maple : cpu = 0.039 (sec), leaf count = 110
dsolve(x*(x-1)*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+c*y(x)=0,y(x))
y(x)=c1hypergeom([−12+a2−2a−4c+12+a2,−12−a2−2a−4c+12+a2],[−b],x)+c2xb+1hypergeom([12−a2−2a−4c+12+a2+b,12+a2−2a−4c+12+a2+b],[b+2],x)
[next] [prev] [prev-tail] [front] [up]