[next] [prev] [prev-tail] [tail] [up]
y′(x)(x(a1+b1+1)−d1)+a1b1d1+(x−1)xy″(x)=0 ✓ Mathematica : cpu = 0.221147 (sec), leaf count = 65
DSolve[a1*b1*d1 + (-d1 + (1 + a1 + b1)*x)*Derivative[1][y][x] + (-1 + x)*x*Derivative[2][y][x] == 0,y[x],x]
{{y(x)→a1b1xΓ(d1+1)3F~2(1,a1+b1+1,1;d1+1,2;x)−c1x1−d12F1(1−d1,a1+b1−d1+1;2−d1;x)d1−1+c2}} ✓ Maple : cpu = 0.485 (sec), leaf count = 76
dsolve(x*(x-1)*diff(diff(y(x),x),x)+((a1+b1+1)*x-d1)*diff(y(x),x)+a1*b1*d1=0,y(x))
y(x)=∫(−signum(x−1)a1+b1−d1(−signum(x−1))−a1−b1+d1hypergeom([d1,−a1−b1+d1],[1+d1],x)a1b1+x−d1c1)(x−1)−a1−b1−1+d1dx+c2
[next] [prev] [prev-tail] [front] [up]