ODE No. 1283

\[ 4 x^2 y''(x)+4 x^2 \log (x) y'(x)+y(x) \left (x^2 \log ^2(x)+2 x-8\right )-4 \sqrt {e^x x^{-x}} x^2=0 \] Mathematica : cpu = 0.060708 (sec), leaf count = 90

DSolve[-4*x^2*Sqrt[E^x/x^x] + (-8 + 2*x + x^2*Log[x]^2)*y[x] + 4*x^2*Log[x]*Derivative[1][y][x] + 4*x^2*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 e^{x/2} x^{-\frac {x}{2}-1}+\frac {1}{3} c_2 e^{x/2} x^{2-\frac {x}{2}}+\frac {1}{9} \left (3 x^2 \sqrt {e^x x^{-x}} \log (x)-x^2 \sqrt {e^x x^{-x}}\right )\right \}\right \}\] Maple : cpu = 0.119 (sec), leaf count = 48

dsolve(4*x^2*diff(diff(y(x),x),x)+4*x^2*ln(x)*diff(y(x),x)+(x^2*ln(x)^2+2*x-8)*y(x)-4*x^2*(exp(x)/(x^x))^(1/2)=0,y(x))
 

\[y \left (x \right ) = \frac {\left (\ln \left (x \right )-\frac {1}{3}\right ) x^{2} \sqrt {x^{-x} {\mathrm e}^{x}}}{3}+{\mathrm e}^{\frac {x}{2}} \left (c_{1} x^{-\frac {x}{2}+2}+c_{2} x^{-\frac {x}{2}-1}\right )\]