\[ 16 x^2 y''(x)+32 x y'(x)+(-4 x-5) y(x)=0 \] ✓ Mathematica : cpu = 0.104253 (sec), leaf count = 53
DSolve[(-5 - 4*x)*y[x] + 32*x*Derivative[1][y][x] + 16*x^2*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {c_2 e^{-\sqrt {x}} \left (\sqrt {x}+1\right )}{x^{5/4}}-\frac {c_1 e^{\sqrt {x}} \left (\sqrt {x}-1\right )}{x^{5/4}}\right \}\right \}\] ✓ Maple : cpu = 0.089 (sec), leaf count = 33
dsolve(16*x^2*diff(diff(y(x),x),x)+32*x*diff(y(x),x)-(4*x+5)*y(x)=0,y(x))
\[y \left (x \right ) = \frac {c_{2} \left (\sqrt {x}+1\right ) {\mathrm e}^{-\sqrt {x}}+c_{1} {\mathrm e}^{\sqrt {x}} \left (\sqrt {x}-1\right )}{x^{\frac {5}{4}}}\]