\[ x^3 y''(x)-x^2 y'(x)+x y(x)-\log ^3(x)=0 \] ✓ Mathematica : cpu = 0.0129971 (sec), leaf count = 41
DSolve[-Log[x]^3 + x*y[x] - x^2*Derivative[1][y][x] + x^3*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {2 \log ^3(x)+6 \log ^2(x)+9 \log (x)+6}{8 x}+c_1 x+c_2 x \log (x)\right \}\right \}\] ✓ Maple : cpu = 0.016 (sec), leaf count = 40
dsolve(x^3*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x)-ln(x)^3=0,y(x))
\[y \left (x \right ) = \frac {2 \ln \left (x \right )^{3}+6 \ln \left (x \right )^{2}+\left (8 c_{1} x^{2}+9\right ) \ln \left (x \right )+8 x^{2} c_{2}+6}{8 x}\]