ODE No. 1322

\[ (x+1) x^2 y''(x)+2 (3 x+2) x y'(x)=0 \] Mathematica : cpu = 0.0366021 (sec), leaf count = 44

DSolve[2*x*(2 + 3*x)*Derivative[1][y][x] + x^2*(1 + x)*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 \left (-\frac {1}{3 x^3}+\frac {1}{x^2}-\frac {3}{x}-\frac {1}{x+1}-4 \log (x)+4 \log (x+1)\right )+c_2\right \}\right \}\] Maple : cpu = 0.019 (sec), leaf count = 44

dsolve(x^2*(1+x)*diff(diff(y(x),x),x)+2*x*(3*x+2)*diff(y(x),x)=0,y(x))
 

\[y \left (x \right ) = c_{1}+\left (-4 \ln \left (x \right )+4 \ln \left (1+x \right )-\frac {12 x^{3}+6 x^{2}-2 x +1}{3 \left (1+x \right ) x^{3}}\right ) c_{2}\]