ODE No. 1413

\[ y''(x)=\frac {y'(x)}{x (\log (x)-1)}-\frac {y(x)}{x^2 (\log (x)-1)} \] Mathematica : cpu = 0.0444213 (sec), leaf count = 16

DSolve[Derivative[2][y][x] == -(y[x]/(x^2*(-1 + Log[x]))) + Derivative[1][y][x]/(x*(-1 + Log[x])),y[x],x]
 

\[\{\{y(x)\to c_1 x-c_2 \log (x)\}\}\] Maple : cpu = 0.073 (sec), leaf count = 12

dsolve(diff(diff(y(x),x),x) = 1/x/(ln(x)-1)*diff(y(x),x)-1/x^2/(ln(x)-1)*y(x),y(x))
 

\[y \left (x \right ) = c_{1} x +c_{2} \ln \left (x \right )\]