ODE No. 1416

y(x)=(nv)(n+v+1)y(x)(2n+1)cot(x)y(x) Mathematica : cpu = 0.163673 (sec), leaf count = 46

DSolve[Derivative[2][y][x] == (n - v)*(1 + n + v)*y[x] - (1 + 2*n)*Cot[x]*Derivative[1][y][x],y[x],x]
 

{{y(x)c1(cos2(x)1)n/2Pvn(cos(x))+c2(cos2(x)1)n/2Qvn(cos(x))}} Maple : cpu = 0.167 (sec), leaf count = 26

dsolve(diff(diff(y(x),x),x) = -(2*n+1)*cos(x)/sin(x)*diff(y(x),x)-(v+n+1)*(v-n)*y(x),y(x))
 

y(x)=(sinn(x))(LegendreQ(v,n,cos(x))c2+LegendreP(v,n,cos(x))c1)