ODE No. 1487

\[ (2 x-1) y^{(3)}(x)+(x+4) y''(x)+2 y'(x)=0 \] Mathematica : cpu = 0.649309 (sec), leaf count = 87

DSolve[2*Derivative[1][y][x] + (4 + x)*Derivative[2][y][x] + (-1 + 2*x)*Derivative[3][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \int _1^x\left (\frac {e^{-\frac {K[1]}{2}} c_1 \left (1+\frac {1}{4 \left (\frac {K[1]}{2}-\frac {1}{4}\right )}\right )}{\sqrt [4]{\frac {K[1]}{2}-\frac {1}{4}}}+e^{-\frac {K[1]}{2}} c_2 L_{-\frac {1}{4}}^{\frac {5}{4}}\left (\frac {K[1]}{2}-\frac {1}{4}\right )\right )dK[1]+c_3\right \}\right \}\] Maple : cpu = 0.124 (sec), leaf count = 38

dsolve((2*x-1)*diff(diff(diff(y(x),x),x),x)+(x+4)*diff(diff(y(x),x),x)+2*diff(y(x),x)=0,y(x))
 

\[y \left (x \right ) = \frac {\left (c_{3}+\int \frac {\left (2 c_{1} x +c_{2}\right ) {\mathrm e}^{\frac {x}{2}}}{\left (2 x -1\right )^{\frac {3}{4}}}d x \right ) {\mathrm e}^{-\frac {x}{2}}}{\left (2 x -1\right )^{\frac {1}{4}}}\]