\[ 4 x^2 y^{(3)}(x)+\left (x^2+14 x-1\right ) y''(x)+4 (x+1) y'(x)+2 y(x)=0 \] ✓ Mathematica : cpu = 0.270907 (sec), leaf count = 150
DSolve[2*y[x] + 4*(1 + x)*Derivative[1][y][x] + (-1 + 14*x + x^2)*Derivative[2][y][x] + 4*x^2*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_2 e^{\frac {1}{4} \left (-x-\frac {1}{x}+2 \log (x)\right )} \int _1^xe^{\frac {K[1]^2-10 \log (K[1]) K[1]+1}{4 K[1]}}dK[1]-\sqrt {\pi } c_3 \left (e \text {erfi}\left (\frac {1-x}{2 \sqrt {x}}\right )+\text {erfi}\left (\frac {x+1}{2 \sqrt {x}}\right )-i (e-1)\right ) e^{\frac {1}{4} \left (-x-\frac {1}{x}+2 \log (x)\right )-\frac {1}{2}}+c_1 e^{\frac {1}{4} \left (-x-\frac {1}{x}+2 \log (x)\right )}\right \}\right \}\] ✓ Maple : cpu = 0.159 (sec), leaf count = 43
dsolve(4*x^2*diff(diff(diff(y(x),x),x),x)+(x^2+14*x-1)*diff(diff(y(x),x),x)+4*(1+x)*diff(y(x),x)+2*y(x)=0,y(x))
\[y \left (x \right ) = \left (c_{3}+\int \frac {\left (2 c_{1} x +c_{2}\right ) {\mathrm e}^{\frac {x}{4}} {\mathrm e}^{\frac {1}{4 x}}}{4 x^{\frac {5}{2}}}d x \right ) {\mathrm e}^{-\frac {x}{4}} {\mathrm e}^{-\frac {1}{4 x}} \sqrt {x}\]