ODE No. 1521

\[ (x+1) x^3 y^{(3)}(x)-(4 x+2) x^2 y''(x)+(10 x+4) x y'(x)-4 (3 x+1) y(x)=0 \] Mathematica : cpu = 0.0475839 (sec), leaf count = 35

DSolve[-4*(1 + 3*x)*y[x] + x*(4 + 10*x)*Derivative[1][y][x] - x^2*(2 + 4*x)*Derivative[2][y][x] + x^3*(1 + x)*Derivative[3][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 x^2+c_3 x^2 \left (x+\frac {1}{x}+\log ^2(x)\right )+c_2 x^2 \log (x)\right \}\right \}\] Maple : cpu = 0.305 (sec), leaf count = 28

dsolve((1+x)*x^3*diff(diff(diff(y(x),x),x),x)-(4*x+2)*x^2*diff(diff(y(x),x),x)+(10*x+4)*x*diff(y(x),x)-4*(3*x+1)*y(x)=0,y(x))
 

\[y \left (x \right ) = x \left (\ln \left (x \right )^{2} c_{3} x +\ln \left (x \right ) c_{2} x +c_{3} x^{2}+c_{1} x +c_{3}\right )\]