ODE No. 1526

\[ \left (x^4+2 x^2+2 x+1\right ) x^2 y^{(3)}(x)-\left (2 x^6+3 x^4-6 x^2-6 x-1\right ) y''(x)+\left (x^6-6 x^3-15 x^2-12 x-2\right ) y'(x)+\left (x^4+4 x^3+8 x^2+6 x+1\right ) y(x)=0 \] Mathematica : cpu = 130.222 (sec), leaf count = 27

DSolve[(1 + 6*x + 8*x^2 + 4*x^3 + x^4)*y[x] + (-2 - 12*x - 15*x^2 - 6*x^3 + x^6)*Derivative[1][y][x] - (-1 - 6*x - 6*x^2 + 3*x^4 + 2*x^6)*Derivative[2][y][x] + x^2*(1 + 2*x + 2*x^2 + x^4)*Derivative[3][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 e^x+c_2 e^x x+c_3 e^{\frac {1}{x}}\right \}\right \}\] Maple : cpu = 0.187 (sec), leaf count = 19

dsolve(x^2*(x^4+2*x^2+2*x+1)*diff(diff(diff(y(x),x),x),x)-(2*x^6+3*x^4-6*x^2-6*x-1)*diff(diff(y(x),x),x)+(x^6-6*x^3-15*x^2-12*x-2)*diff(y(x),x)+(x^4+4*x^3+8*x^2+6*x+1)*y(x)=0,y(x))
 

\[y \left (x \right ) = c_{2} {\mathrm e}^{\frac {1}{x}}+{\mathrm e}^{x} \left (c_{3} x +c_{1}\right )\]