ODE No. 1568

\[ a y(x)+x^4 y^{(4)}(x)+8 x^3 y^{(3)}(x)+12 x^2 y''(x)=0 \] Mathematica : cpu = 0.0092596 (sec), leaf count = 122

DSolve[a*y[x] + 12*x^2*Derivative[2][y][x] + 8*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 x^{\frac {1}{2} \left (-\sqrt {5-4 \sqrt {1-a}}-1\right )}+c_2 x^{\frac {1}{2} \left (\sqrt {5-4 \sqrt {1-a}}-1\right )}+c_3 x^{\frac {1}{2} \left (-\sqrt {4 \sqrt {1-a}+5}-1\right )}+c_4 x^{\frac {1}{2} \left (\sqrt {4 \sqrt {1-a}+5}-1\right )}\right \}\right \}\] Maple : cpu = 0.033 (sec), leaf count = 89

dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+8*x^3*diff(diff(diff(y(x),x),x),x)+12*x^2*diff(diff(y(x),x),x)+a*y(x)=0,y(x))
 

\[y \left (x \right ) = c_{1} x^{-\frac {1}{2}-\frac {\sqrt {5-4 \sqrt {1-a}}}{2}}+c_{2} x^{-\frac {1}{2}+\frac {\sqrt {5-4 \sqrt {1-a}}}{2}}+c_{3} x^{-\frac {1}{2}-\frac {\sqrt {5+4 \sqrt {1-a}}}{2}}+c_{4} x^{-\frac {1}{2}+\frac {\sqrt {5+4 \sqrt {1-a}}}{2}}\]