ODE No. 1594

\[ y''(x)-6 y(x)^2+4 y(x)=0 \] Mathematica : cpu = 0.395956 (sec), leaf count = 373

DSolve[4*y[x] - 6*y[x]^2 + Derivative[2][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [\frac {4 \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]\right ) \left (y(x)-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]\right ) F\left (\sin ^{-1}\left (\sqrt {\frac {\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-y(x)}{\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]}}\right )|\frac {\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]}{\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]}\right ){}^2}{\left (4 y(x)^3-4 y(x)^2+c_1\right ) \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,1\right ]\right ) \left (\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,3\right ]-\text {Root}\left [4 \text {$\#$1}^3-4 \text {$\#$1}^2+c_1\& ,2\right ]\right )}=(x+c_2){}^2,y(x)\right ]\] Maple : cpu = 0.792 (sec), leaf count = 59

dsolve(diff(diff(y(x),x),x)-6*y(x)^2+4*y(x)=0,y(x))
 

\[\int _{}^{y \left (x \right )}\frac {1}{\sqrt {4 \textit {\_a}^{3}-4 \textit {\_a}^{2}+c_{1}}}d \textit {\_a} -x -c_{2} = 0\]