ODE No. 1611

\[ y''(x)-3 y'(x)-y(x)^2-2 y(x)=0 \] Mathematica : cpu = 2.92369 (sec), leaf count = 0

DSolve[-2*y[x] - y[x]^2 - 3*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-2*y[x] - y[x]^2 - 3*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)-3*diff(y(x),x)-y(x)^2-2*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \boldsymbol {\mathrm {where}}\left [\left \{\left (\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )-3 \textit {\_}b\left (\textit {\_a} \right )-\textit {\_a}^{2}-2 \textit {\_a} =0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1}, y \left (x \right )=\textit {\_a} \right \}\right ]\]