ODE No. 1618

\[ a y'(x)-2 a+b e^{y(x)}+y''(x)=0 \] Mathematica : cpu = 25.4111 (sec), leaf count = 0

DSolve[-2*a + b*E^y[x] + a*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-2*a + b*E^y[x] + a*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)+b*exp(y(x))-2*a=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \boldsymbol {\mathrm {where}}\left [\left \{\left (\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )+a \textit {\_}b\left (\textit {\_a} \right )+b \,{\mathrm e}^{\textit {\_a}}-2 a =0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1}, y \left (x \right )=\textit {\_a} \right \}\right ]\]