ODE No. 1659

\[ y''(x)-y(x) h\left (x,\frac {y'(x)}{y(x)}\right )=0 \] Mathematica : cpu = 5.42883 (sec), leaf count = 0

DSolve[-(h[x, Derivative[1][y][x]/y[x]]*y[x]) + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(h[x, Derivative[1][y][x]/y[x]]*y[x]) + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)-y(x)*h(x,diff(y(x),x)/y(x))=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\boldsymbol {\mathrm {where}}\left [\left \{\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )=-\textit {\_}b\left (\textit {\_a} \right )^{2}+h \left (\textit {\_a} , \textit {\_}b\left (\textit {\_a} \right )\right )\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}\right \}, \left \{x =\textit {\_a} , y \left (x \right )={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]