ODE No. 1662

\[ a y''(x)+c y(x)+h\left (y'(x)\right )=0 \] Mathematica : cpu = 0.762194 (sec), leaf count = 0

DSolve[h[Derivative[1][y][x]] + c*y[x] + a*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[h[Derivative[1][y][x]] + c*y[x] + a*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(a*diff(diff(y(x),x),x)+h(diff(y(x),x))+c*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \boldsymbol {\mathrm {where}}\left [\left \{\left (\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )+\frac {h \left (\textit {\_}b\left (\textit {\_a} \right )\right )+c \textit {\_a}}{a}=0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1}, y \left (x \right )=\textit {\_a} \right \}\right ]\]