ODE No. 1669

\[ -x^2 y'(x)^2+x y''(x)+2 y'(x)+y(x)^2=0 \] Mathematica : cpu = 0.442446 (sec), leaf count = 160

DSolve[y[x]^2 + 2*Derivative[1][y][x] - x^2*Derivative[1][y][x]^2 + x*Derivative[2][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [\int _1^{y(x)}-\frac {x}{e^{x K[1]} c_1+2 x K[1]+1}dK[1]-\int _1^x\left (\int _1^{y(x)}\left (\frac {\left (e^{K[1] K[2]} c_1 K[1]+2 K[1]\right ) K[2]}{\left (e^{K[1] K[2]} c_1+2 K[1] K[2]+1\right ){}^2}-\frac {1}{e^{K[1] K[2]} c_1+2 K[1] K[2]+1}\right )dK[1]-\frac {e^{K[2] y(x)} c_1+K[2] y(x)+1}{K[2] \left (e^{K[2] y(x)} c_1+2 K[2] y(x)+1\right )}\right )dK[2]=c_2,y(x)\right ]\] Maple : cpu = 0.899 (sec), leaf count = 32

dsolve(x*diff(diff(y(x),x),x)-x^2*diff(y(x),x)^2+2*diff(y(x),x)+y(x)^2=0,y(x))
 

\[y \left (x \right ) = \frac {\RootOf \left (-\ln \left (x \right )+c_{2}+\int _{}^{\textit {\_Z}}-\frac {1}{{\mathrm e}^{\textit {\_f}} c_{1}-2 \textit {\_f} -1}d \textit {\_f} \right )}{x}\]