ODE No. 1703

\[ y(x) y''(x)-y'(x)^2+y(x)^2 (-\log (y(x)))=0 \] Mathematica : cpu = 0.351419 (sec), leaf count = 77

DSolve[-(Log[y[x]]*y[x]^2) - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \exp \left (-\frac {1}{2} \sqrt {c_1} e^{-x-c_2} \left (-1+e^{2 x+2 c_2}\right )\right )\right \},\left \{y(x)\to \exp \left (\frac {1}{2} \sqrt {c_1} e^{-x-c_2} \left (-1+e^{2 x+2 c_2}\right )\right )\right \}\right \}\] Maple : cpu = 0.139 (sec), leaf count = 21

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-y(x)^2*ln(y(x))=0,y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {{\mathrm e}^{-2 x} c_{1} {\mathrm e}^{x}}{2}} {\mathrm e}^{-\frac {c_{2} {\mathrm e}^{x}}{2}}\]