\[ 2 y(x) y''(x)-y'(x)^2-8 y(x)^3=0 \] ✓ Mathematica : cpu = 0.750248 (sec), leaf count = 135
DSolve[-8*y[x]^3 - Derivative[1][y][x]^2 + 2*y[x]*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\& \right ][x+c_2]\right \}\right \}\] ✓ Maple : cpu = 0.942 (sec), leaf count = 53
dsolve(2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-8*y(x)^3=0,y(x))
\[\int _{}^{y \left (x \right )}\frac {1}{\sqrt {4 \textit {\_a}^{3}+\textit {\_a} c_{1}}}d \textit {\_a} -x -c_{2} = 0\]