ODE No. 1820

\[ y''(x) \left (\text {f1}(x) y'(x)+\text {f2}(x) y(x)\right )+\text {f3}(x) y'(x)^2+\text {f4}(x) y(x) y'(x)+\text {f5}(x) y(x)^2=0 \] Mathematica : cpu = 302.556 (sec), leaf count = 0

DSolve[f5[x]*y[x]^2 + f4[x]*y[x]*Derivative[1][y][x] + f3[x]*Derivative[1][y][x]^2 + (f2[x]*y[x] + f1[x]*Derivative[1][y][x])*Derivative[2][y][x] == 0,y[x],x]
 

, timed out

$Aborted

Maple : cpu = 0. (sec), leaf count = 0

dsolve((f1*diff(y(x),x)+f2*y(x))*diff(diff(y(x),x),x)+f3*diff(y(x),x)^2+f4(x)*y(x)*diff(y(x),x)+f5(x)*y(x)^2=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\boldsymbol {\mathrm {where}}\left [\left \{\frac {d}{d \textit {\_a}}\mathrm {\_}\mathrm {b}\left (\textit {\_a} \right )=-\frac {\textit {\_}b\left (\textit {\_a} \right )^{3} \mathit {f1} +\left (\mathit {f2} +\mathit {f3} \right ) \textit {\_}b\left (\textit {\_a} \right )^{2}+\mathit {f4} \left (\textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )+\mathit {f5} \left (\textit {\_a} \right )}{\textit {\_}b\left (\textit {\_a} \right ) \mathit {f1} +\mathit {f2}}\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}\right \}, \left \{x =\textit {\_a} , y \left (x \right )={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]