ODE No. 1835

\[ 32 y''(x) \left (x y''(x)-y'(x)\right )^3+\left (2 y(x) y''(x)-y'(x)^2\right )^3=0 \] Mathematica : cpu = 0.0734405 (sec), leaf count = 143

DSolve[32*Derivative[2][y][x]*(-Derivative[1][y][x] + x*Derivative[2][y][x])^3 + (-Derivative[1][y][x]^2 + 2*y[x]*Derivative[2][y][x])^3 == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {1}{4} \left (-\frac {8 c_1{}^3}{\sqrt [3]{3} \sqrt [3]{\sqrt {3} \sqrt {27 c_1{}^{10} c_2{}^{10}-64 c_1{}^9 c_2{}^9}-9 c_1{}^5 c_2{}^5}}+\frac {c_1{}^2}{c_2}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {27 c_1{}^{10} c_2{}^{10}-64 c_1{}^9 c_2{}^9}-9 c_1{}^5 c_2{}^5}}{3^{2/3} c_2{}^3}\right ) x^2+c_1 x+c_2\right \}\right \}\] Maple : cpu = 0. (sec), leaf count = 0

dsolve((2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2)^3+32*diff(diff(y(x),x),x)*(x*diff(diff(y(x),x),x)-diff(y(x),x))^3=0,y(x))
 

, exception

time expired