ODE No. 1850

\[ y^{(4)}(x) y'(x)-y^{(3)}(x) y''(x)+y^{(3)}(x) y'(x)^3=0 \] Mathematica : cpu = 0.120246 (sec), leaf count = 0

DSolve[Derivative[1][y][x]^3*Derivative[3][y][x] - Derivative[2][y][x]*Derivative[3][y][x] + Derivative[1][y][x]*Derivative[4][y][x] == 0,y[x],x]
 

, could not solve

DSolve[Derivative[1][y][x]^3*Derivative[3][y][x] - Derivative[2][y][x]*Derivative[3][y][x] + Derivative[1][y][x]*Derivative[4][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x)*diff(diff(diff(diff(y(x),x),x),x),x)-diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x)+diff(y(x),x)^3*diff(diff(diff(y(x),x),x),x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left (\int \frac {{\mathrm e}^{\int -\textit {\_j} \left (\textit {\_h} \right )d \textit {\_h} -c_{2}} \textit {\_j} \left (\textit {\_h} \right )}{\textit {\_h}}d \textit {\_h} +c_{3}\right )\boldsymbol {\mathrm {where}}\left [\left \{\frac {d}{d \textit {\_h}}\textit {\_j} \left (\textit {\_h} \right )=\left (12 \textit {\_h} +3\right ) \textit {\_j} \left (\textit {\_h} \right )^{3}+\frac {\left (10 \textit {\_h} +1\right ) \textit {\_j} \left (\textit {\_h} \right )^{2}}{\textit {\_h}}+\frac {\textit {\_j} \left (\textit {\_h} \right )}{\textit {\_h}}\right \}, \left \{\textit {\_h} =\frac {\frac {d^{2}}{d x^{2}}y \left (x \right )}{\left (\frac {d}{d x}y \left (x \right )\right )^{3}}, \textit {\_j} \left (\textit {\_h} \right )=\frac {\left (\frac {d}{d x}y \left (x \right )\right )^{3}}{\frac {\left (\frac {d}{d x}y \left (x \right )\right ) \left (\frac {d^{3}}{d x^{3}}y \left (x \right )\right )}{\frac {d^{2}}{d x^{2}}y \left (x \right )}-3 \frac {d^{2}}{d x^{2}}y \left (x \right )}\right \}, \left \{x =\int \frac {{\mathrm e}^{\int -2 \textit {\_j} \left (\textit {\_h} \right )d \textit {\_h} -2 c_{2}} \textit {\_j} \left (\textit {\_h} \right )}{\textit {\_h}}d \textit {\_h} +c_{1}, y \left (x \right )=\int \frac {{\mathrm e}^{\int -\textit {\_j} \left (\textit {\_h} \right )d \textit {\_h} -c_{2}} \textit {\_j} \left (\textit {\_h} \right )}{\textit {\_h}}d \textit {\_h} +c_{3}\right \}\right ]\]