ODE No. 1908

{x(t)=6x(t)72y(t)+44z(t),y(t)=4x(t)4y(t)+26z(t),z(t)=6x(t)63y(t)+38z(t)} Mathematica : cpu = 0.0344443 (sec), leaf count = 551

DSolve[{Derivative[1][x][t] == 6*x[t] - 72*y[t] + 44*z[t], Derivative[1][y][t] == 4*x[t] - 4*y[t] + 26*z[t], Derivative[1][z][t] == 6*x[t] - 63*y[t] + 38*z[t]},{x[t], y[t], z[t]},t]
 

{{x(t)36c2RootSum[#1340#12+1714#1+1404&,2#1e#1t+e#1t3#1280#1+1714&]+4c3RootSum[#1340#12+1714#1+1404&,11#1e#1t424e#1t3#1280#1+1714&]+c1RootSum[#1340#12+1714#1+1404&,#12e#1t34#1e#1t+1486e#1t3#1280#1+1714&],y(t)4c1RootSum[#1340#12+1714#1+1404&,#1e#1t+e#1t3#1280#1+1714&]+2c3RootSum[#1340#12+1714#1+1404&,13#1e#1t+10e#1t3#1280#1+1714&]+c2RootSum[#1340#12+1714#1+1404&,#12e#1t44#1e#1t36e#1t3#1280#1+1714&],z(t)6c1RootSum[#1340#12+1714#1+1404&,#1e#1t38e#1t3#1280#1+1714&]9c2RootSum[#1340#12+1714#1+1404&,7#1e#1t+6e#1t3#1280#1+1714&]+c3RootSum[#1340#12+1714#1+1404&,#12e#1t2#1e#1t+264e#1t3#1280#1+1714&]}} Maple : cpu = 1.155 (sec), leaf count = 1129

dsolve({diff(x(t),t) = 6*x(t)-72*y(t)+44*z(t), diff(y(t),t) = 4*x(t)-4*y(t)+26*z(t), diff(z(t),t) = 6*x(t)-63*y(t)+38*z(t)})
 

{x(t)=c2e(3542+(263474+18351406311)23+80(263474+18351406311)13)t6(263474+18351406311)13sin(((263474+18351406311)23+3542)t3413(131737+9351406311)231580844+108351406311)+c3e(3542+(263474+18351406311)23+80(263474+18351406311)13)t6(263474+18351406311)13cos(((263474+18351406311)23+3542)t3413(131737+9351406311)231580844+108351406311)+c1e((263474+18351406311)2340(263474+18351406311)133542)t3(263474+18351406311)13,y(t)=26522496((29521(3+311713543729521)c2((91637096720+4742532351406311)(131737+9351406311)2)13133952+c3(351406311+1317379)(263474+18351406311)13+c3(351406311+1317379)(263474+18351406311)432679041612830834397c3736736+711c3351406311(22909274180+1185633351406311)138372+10407223(263474+18351406311)23c31674475104333c33514063117367361612830834397c23736736225312999c2117135437736736)cos(((263474+18351406311)23+3542)t3(22909274180+1185633351406311)13790422+54351406311)+(29521c3(3+311713543729521)((91637096720+4742532351406311)(131737+9351406311)2)13133952+c2(351406311+1317379)(263474+18351406311)13+c2(351406311+1317379)(263474+18351406311)432679041612830834397c2736736+711c2351406311(22909274180+1185633351406311)138372+10407223(263474+18351406311)23c21674475104333c2351406311736736+1612830834397c33736736+225312999c3117135437736736)sin(((263474+18351406311)23+3542)t3(22909274180+1185633351406311)13790422+54351406311))e(3542+(263474+18351406311)23+80(263474+18351406311)13)t6(263474+18351406311)1353044992e((263474+18351406311)2340(263474+18351406311)133542)t3(263474+18351406311)13c1(711(131737+9351406311)2341335140631133488+(351406311+1317379)(263474+18351406311)13+(351406311267904+1317372411136)(263474+18351406311)4310407223(263474+18351406311)2333488751043333514063117367361612830834397736736)(263474+18351406311)23(73329029784+5009688351406311),z(t)=1322937(((38827(3+1811713543738827)c2((91637096720+4742532351406311)(131737+9351406311)2)13440979+c3(351406311+1317379)(263474+18351406311)13c3(351406311+1317379)(263474+18351406311)431469931818560275316c344097933060c3351406311(22909274180+1185633351406311)13146993725870870(263474+18351406311)23c344097934414106c33514063111469931818560275316c23440979103242318c2117135437146993)cos(((263474+18351406311)23+3542)t3(22909274180+1185633351406311)13790422+54351406311)+(38827c3(3+1811713543738827)((91637096720+4742532351406311)(131737+9351406311)2)13440979+c2(351406311+1317379)(263474+18351406311)13c2(351406311+1317379)(263474+18351406311)431469931818560275316c244097933060c2351406311(22909274180+1185633351406311)13146993725870870(263474+18351406311)23c244097934414106c2351406311146993+1818560275316c33440979+103242318c3117135437146993)sin(((263474+18351406311)23+3542)t3(22909274180+1185633351406311)13790422+54351406311))e(3542+(263474+18351406311)23+80(263474+18351406311)13)t6(263474+18351406311)132e((263474+18351406311)2340(263474+18351406311)133542)t3(263474+18351406311)13c1(8265(131737+9351406311)23413351406311146993+(351406311+1317379)(263474+18351406311)13+(3514063111469931317371322937)(263474+18351406311)43+362935435(263474+18351406311)23440979344141063514063111469931818560275316440979))(263474+18351406311)23(4073834988+278316351406311)}