ODE No. 1914

{x(t)=x(t)(ay(t)+b),y(t)=y(t)(cx(t)+d)} Mathematica : cpu = 0.28613 (sec), leaf count = 204

DSolve[{Derivative[1][x][t] == x[t]*(b + a*y[t]), Derivative[1][y][t] == (d + c*x[t])*y[t]},{x[t], y[t]},t]
 

{{y(t)bW(aInverseFunction[1#11K[1](W(aec1b+cK[1]bK[1]dbb)+1)dK[1]&][bt+c2]dbexp(cInverseFunction[1#11K[1](W(aec1b+cK[1]bK[1]dbb)+1)dK[1]&][bt+c2]b+c1b)b)a,x(t)InverseFunction[1#11K[1](W(aec1b+cK[1]bK[1]dbb)+1)dK[1]&][bt+c2]}} Maple : cpu = 0.46 (sec), leaf count = 92

dsolve({diff(x(t),t) = (a*y(t)+b)*x(t), diff(y(t),t) = (c*x(t)+d)*y(t)})
 

[{x(t)=0},{y(t)=c1edt}]