[next] [prev] [prev-tail] [tail] [up]
{x′(t)=y(t)2−cos(x(t)),y′(t)=y(t)(−sin(x(t)))} ✓ Mathematica : cpu = 202.221 (sec), leaf count = 3406
DSolve[{Derivative[1][x][t] == -Cos[x[t]] + y[t]^2, Derivative[1][y][t] == -(Sin[x[t]]*y[t])},{x[t], y[t]},t]
{{y(t)→323cos(InverseFunction[∫1#1(3c1+9c12−4cos3(K[1]))2/32 22/3cos2(K[1])+2(3c1+9c12−4cos3(K[1]))2/3cos(K[1])+323c13c1+9c12−4cos3(K[1])3+239c12−4cos3(K[1])3c1+9c12−4cos3(K[1])3dK[1]&][t2+c2])81c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[1]))2/32 22/3cos2(K[1])+2(3c1+9c12−4cos3(K[1]))2/3cos(K[1])+323c13c1+9c12−4cos3(K[1])3+239c12−4cos3(K[1])3c1+9c12−4cos3(K[1])3dK[1]&][t2+c2])3+81c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[1]))2/32 22/3cos2(K[1])+2(3c1+9c12−4cos3(K[1]))2/3cos(K[1])+323c13c1+9c12−4cos3(K[1])3+239c12−4cos3(K[1])3c1+9c12−4cos3(K[1])3dK[1]&][t2+c2])3323,x(t)→InverseFunction[∫1#1(3c1+9c12−4cos3(K[1]))2/32 22/3cos2(K[1])+2(3c1+9c12−4cos3(K[1]))2/3cos(K[1])+323c13c1+9c12−4cos3(K[1])3+239c12−4cos3(K[1])3c1+9c12−4cos3(K[1])3dK[1]&][t2+c2]},{y(t)→−3(1+i3)cos(InverseFunction[∫1#1(3c1+9c12−4cos3(K[2]))2/32i22/33cos2(K[2])−2 22/3cos2(K[2])+4(3c1+9c12−4cos3(K[2]))2/3cos(K[2])−3i233c13c1+9c12−4cos3(K[2])3−323c13c1+9c12−4cos3(K[2])3−i2339c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3−239c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3dK[2]&][t4+c2])22/381c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[2]))2/32i22/33cos2(K[2])−2 22/3cos2(K[2])+4(3c1+9c12−4cos3(K[2]))2/3cos(K[2])−3i233c13c1+9c12−4cos3(K[2])3−323c13c1+9c12−4cos3(K[2])3−i2339c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3−239c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3dK[2]&][t4+c2])3−(1−i3)81c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[2]))2/32i22/33cos2(K[2])−2 22/3cos2(K[2])+4(3c1+9c12−4cos3(K[2]))2/3cos(K[2])−3i233c13c1+9c12−4cos3(K[2])3−323c13c1+9c12−4cos3(K[2])3−i2339c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3−239c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3dK[2]&][t4+c2])3623,x(t)→InverseFunction[∫1#1(3c1+9c12−4cos3(K[2]))2/32i22/33cos2(K[2])−2 22/3cos2(K[2])+4(3c1+9c12−4cos3(K[2]))2/3cos(K[2])−3i233c13c1+9c12−4cos3(K[2])3−323c13c1+9c12−4cos3(K[2])3−i2339c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3−239c12−4cos3(K[2])3c1+9c12−4cos3(K[2])3dK[2]&][t4+c2]},{y(t)→−3(1−i3)cos(InverseFunction[∫1#1(3c1+9c12−4cos3(K[3]))2/3−2i22/33cos2(K[3])−2 22/3cos2(K[3])+4(3c1+9c12−4cos3(K[3]))2/3cos(K[3])+3i233c13c1+9c12−4cos3(K[3])3−323c13c1+9c12−4cos3(K[3])3+i2339c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3−239c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3dK[3]&][t4+c2])22/381c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[3]))2/3−2i22/33cos2(K[3])−2 22/3cos2(K[3])+4(3c1+9c12−4cos3(K[3]))2/3cos(K[3])+3i233c13c1+9c12−4cos3(K[3])3−323c13c1+9c12−4cos3(K[3])3+i2339c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3−239c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3dK[3]&][t4+c2])3−(1+i3)81c1+6561c12−2916cos3(InverseFunction[∫1#1(3c1+9c12−4cos3(K[3]))2/3−2i22/33cos2(K[3])−2 22/3cos2(K[3])+4(3c1+9c12−4cos3(K[3]))2/3cos(K[3])+3i233c13c1+9c12−4cos3(K[3])3−323c13c1+9c12−4cos3(K[3])3+i2339c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3−239c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3dK[3]&][t4+c2])3623,x(t)→InverseFunction[∫1#1(3c1+9c12−4cos3(K[3]))2/3−2i22/33cos2(K[3])−2 22/3cos2(K[3])+4(3c1+9c12−4cos3(K[3]))2/3cos(K[3])+3i233c13c1+9c12−4cos3(K[3])3−323c13c1+9c12−4cos3(K[3])3+i2339c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3−239c12−4cos3(K[3])3c1+9c12−4cos3(K[3])3dK[3]&][t4+c2]}} ✓ Maple : cpu = 1.166 (sec), leaf count = 108
dsolve({diff(x(t),t) = y(t)^2-cos(x(t)), diff(y(t),t) = -y(t)*sin(x(t))})
[{x(t)=RootOf(−2(∫_Z1−tan(RootOf(−3−(cos2(_f))ln(9(cos2(_f))4cos(_Z)2)+3c1−(cos2(_f))+2_Zcos(_f)))−4cos(2_f)−4−(cos2(_f))+cos(_f)d_f)+t+c2)},{y(t)=ddtx(t)+cos(x(t)),y(t)=−ddtx(t)+cos(x(t))}]
[next] [prev] [prev-tail] [front] [up]