ODE No. 204

\[ a y(x)+y(x) y'(x)+x=0 \] Mathematica : cpu = 0.125276 (sec), leaf count = 70

DSolve[x + a*y[x] + y[x]*Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [\frac {1}{2} \log \left (\frac {a y(x)}{x}+\frac {y(x)^2}{x^2}+1\right )-\frac {a \tan ^{-1}\left (\frac {a+\frac {2 y(x)}{x}}{\sqrt {4-a^2}}\right )}{\sqrt {4-a^2}}=-\log (x)+c_1,y(x)\right ]\] Maple : cpu = 0.325 (sec), leaf count = 92

dsolve(y(x)*diff(y(x),x)+a*y(x)+x = 0,y(x))
 

\[y \left (x \right ) = \RootOf \left (\textit {\_Z}^{2}-{\mathrm e}^{\RootOf \left (x^{2} \left (\left (\tanh ^{2}\left (\frac {\sqrt {\left (a -2\right ) \left (a +2\right )}\, \left (2 c_{1}+\textit {\_Z} +2 \ln \left (x \right )\right )}{2 a}\right )\right ) a^{2}-4 \left (\tanh ^{2}\left (\frac {\sqrt {\left (a -2\right ) \left (a +2\right )}\, \left (2 c_{1}+\textit {\_Z} +2 \ln \left (x \right )\right )}{2 a}\right )\right )-a^{2}-4 \,{\mathrm e}^{\textit {\_Z}}+4\right )\right )}+1+\textit {\_Z} a \right ) x\]