\[ (y(x)+x-1) y'(x)-y(x)+2 x+3=0 \] ✓ Mathematica : cpu = 0.158845 (sec), leaf count = 78
DSolve[3 + 2*x - y[x] + (-1 + x + y[x])*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [2 \sqrt {2} \tan ^{-1}\left (\frac {-y(x)+2 x+3}{\sqrt {2} (y(x)+x-1)}\right )=2 \log \left (\frac {6 x^2+3 y(x)^2-10 y(x)+8 x+11}{(3 x+2)^2}\right )+4 \log (3 x+2)+3 c_1,y(x)\right ]\] ✓ Maple : cpu = 0.164 (sec), leaf count = 48
dsolve((y(x)+x-1)*diff(y(x),x)-y(x)+2*x+3 = 0,y(x))
\[y \left (x \right ) = \frac {5}{3}+\frac {\left (-3 x -2\right ) \sqrt {2}\, \tan \left (\RootOf \left (\sqrt {2}\, \ln \left (2 \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right ) \left (3 x +2\right )^{2}\right )+2 \sqrt {2}\, c_{1}-2 \textit {\_Z} \right )\right )}{3}\]