ODE No. 216

\[ (y(x)-2 x+1) y'(x)+y(x)+x=0 \] Mathematica : cpu = 0.143248 (sec), leaf count = 82

DSolve[x + y[x] + (1 - 2*x + y[x])*Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [6 \sqrt {3} \tan ^{-1}\left (\frac {3 y(x)+1}{\sqrt {3} (-y(x)+2 x-1)}\right )=3 \log \left (\frac {3 x^2+3 y(x)^2-3 (x-1) y(x)-3 x+1}{(1-3 x)^2}\right )+6 \log (3 x-1)+2 c_1,y(x)\right ]\] Maple : cpu = 0.176 (sec), leaf count = 51

dsolve((y(x)-2*x+1)*diff(y(x),x)+y(x)+x = 0,y(x))
 

\[y \left (x \right ) = \frac {\left (-3 x +1\right ) \sqrt {3}\, \tan \left (\RootOf \left (\sqrt {3}\, \ln \left (\frac {3 \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right ) \left (3 x -1\right )^{2}}{4}\right )+2 \sqrt {3}\, c_{1}+6 \textit {\_Z} \right )\right )}{6}+\frac {x}{2}-\frac {1}{2}\]